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Abstract

A facial feature extraction algorithm using the Bayesian Shape Model (BSM) is proposed
in this paper. A full-face model consisting of the contour points and the control points is
designed to describe the face patch, using which the warping/normalization of the extracted
face patch can be performed efficiently. First, the BSM is utilized to match and extract
the contour points of a face. In BSM, the prototype of the face contour can be adjusted
adaptively according to its prior distribution. Moreover, an affine invariant internal energy
term is introduced to describe the local shape deformations between the prototype contour
in the shape domain and the deformable contour in the image domain. Thus both global
and local shape deformations can be tolerated. Then, the control points are estimated
from the matching result of the contour points based on the statistics of the full-face
model. Finally, the face path is extracted and normalized using the piece-wise affine triangle
warping algorithm. Experimental results based on real facial feature extraction demonstrate
that the proposed BSM facial feature extraction algorithm is more accurate and effective

as compared to that of the Active Shape Model (ASM).
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1 Introduction

Facial feature extraction is widely used in the areas of face recognition, database indexing,
image retrieval, multimedia computation and other model-based coding of image sequences
containing human faces. For example, in face recognition, a main procedure is first matching
and extracting the face patch, and then warping it into the standard view and the normal
expression. In this paper, we focus on the problem of facial feature extraction and normaliza-
tion of the extracted face patches. The newly developed affine invariant deformable model,

the Bayesian Shape Model (1; 2) is utilized to match and extract the face contours.

Compared with the traditional rigid models, deformable models have attracted much at-
tention in the areas of object detection and matching because of their ability of adapting
themselves to fit objects more closely. Generally, deformable models can be classified into
two classes (3): the free-form models and the parametric models. The free-form models, e.g.
active contours or snakes, can be used to match any arbitrary shape provided some general
regularization constraints, such as continuity and smoothness, are satisfied. On the other
hand, the parametric models are more constrained because some prior information of the
geometrical shape is incorporated. Compared with the free-form deformable models, it has
been demonstrated that the parametric models are more robust to irrelevant structures and

occlusions when being applied to detect specific shapes of interest.

The parametric models, such as deformable templates/models (4; 3; 5; 6; 7), G-Snake (8) and
Active Shape Model (ASM) (9), encode specific characteristics of a shape and its variations
using global shape model, which is formed by a set of feature parameters or well defined
landmark /boundary points of that shape. A quite successful and versatile scheme in this
field is statistics-based shape models in Bayesian framework (3; 8). In these models, the
prior knowledge of the object as well as the observation statistics are utilized to define the
optimal Bayesian estimate. However, most of these existing parametric models encode the
shape information in a “hard” manner in that the prototype contour is fixed during the

matching process. As a result, only a small amount of local deformations can be tolerated.

The Active Shape Model (ASM) encodes the prior information of object shapes using Prin-
cipal Component Analysis (PCA), and matches object by directly using the geometrical
transformed version of the ASM model. In ASM, the prototype used to match object can



be dynamically adjusted in the matching procedure, which is constrained by the prior dis-
tribution of sample data. Therefore, some global/large shape variations that present in the

samples can be tolerated.

However, ASM takes the reconstructed object model, which matches the image best, as the
matching results. It may not be able to match a new image accurately if the variations of
the shape are not presented in the sample data, or if the number of model modes has been
truncated too severely. Therefore, to match a new object more accurately, a new method
with the name of Bayesian Shape Model (BSM) is proposed to deal with not only the global
deformations defined by the prior distribution of object shapes, but also the local random

variations.

In the BSM, the prior distribution of object shapes, which reflects the global shape variations
of the object, is estimated from the sample data. In the matching procedure, this prior
distribution is used to constrain the dynamically adjustable prototype. In this way, large
shape deformations due to the variations of samples can be tolerated. Moreover, since the
shapes subject to some transformations between the shape space and the image space, such as
affine transformation, it is expected that the algorithms developed should be able to deal with
the rotation, translation, scaling and even shearing. Therefore, an affine invariant internal
energy term is introduced in the BSM to describe mainly the local shape deformations
between the prototype contour in the shape domain and the deformable contour in the
image domain. Because the deformable contour used to match object has been modeled as the
transformed and deformed version of the prototype contour, which can also be dynamically
adjusted to adapt itself to the shape variations using the information gathered from the
matching process, the proposed BSM has the advantage of matching objects with both

global and local variations.

ASM has been demonstrated to be one of the most successful algorithms (9; 10) in the
applications of facial feature extraction. Unfortunately, it may not match the local shape
variation accurately, and it is also dependent on sample data and image background: in case
the background of the input image is different from the training samples, undesirable results
are observed. All these shortcomings limit the applications of the ASM in facial feature
extraction, where not only global but also local shape variations are presented, and the

interested face is generally captured in a complex environment.



Comparing to ASM, the BSM considers both the global and local shape deformations, and it
is also affine invariant and less dependent on background. Therefore, the BSM for extraction

of frontal facial features is studied in this paper.

Unlike the other applications, in facial feature extraction, there are two specific characteris-
tics to be considered. First, the algorithm should be able to distinguish different expressions,
thus both global variations of the whole face and the individual shape variations of separate
features have to be taken into account. Second, the algorithm should be efficient to obtain
the face features for further processing, e.g.. extract the face patch, and perform warping

and normalization.

Fig. 1. Two examples of the manually marked face. ‘0’: 88 contour points, ‘*’: 18 control points.

Generally, the feature points used for matching are the contours of facial features, i.e. the
contours of the outlines of the face, two eyebrows, two eyes, one nose and one mouth (see
Fig.1). Although these points have been proven to be enough for describing the shape of a
face, they are insufficient in dealing with face image warping/normalization (10). To give an
example, the normalized face patch, or the warped face patch that removes the expressions
are quite useful for face recognition (by using the Eigenface algorithm (11)). In order to deal
with the face patch warping, in (10), the Delauney triangulation is utilized to partition the
interior region that is surrounded by the contour points into a set of triangles. However, this
algorithm is depended on or sensitive to the position and shape of the contour points. It
does not consider the characteristics of the expression/action of a face, thus the triangles

obtained differ greatly when the position of the contour points changes.

To solve this problem, in this paper a 2-D full-face model is built based on the CANDIDE

face model (12) and the facial feature model in MPEG-7 proposals. A set of points are



recruited to represent the shape of a whole face. The full-face model consists of two sets: the
contour points and the control points (see Fig.1). The contour points represent mainly the
outline contours of facial components, i.e. the landmark points of the face outline, eyebrows,
eyes, nose and mouth; the control points are the feature points that placed in a number of
key positions on the face being used to formulate the triangular face units for facial image
warping. Based on a number of manually marked training samples, the prior distribution of
the full-face model is obtained by using the PCA, and the individual shape model of each
facial component contour is also built. In this way, not only the separate shape variation of
each component contour of the facial features, but also the global shape variation can be

represented conveniently.

Since the control points are not corresponding to some salient features such as edges of the
image, only the contour points of the full-face model are utilized for matching. The position
of the control points can be estimated from that of the contour points based on their joint
prior distribution. This estimation is possible since the points of the full-face model consist

of redundant information.

Then, the BSM is utilized for facial feature extraction based on the proposed full-face model:
given an input face image, the contour points of the full-face model are incorporated into
the BSM matching framework. Finally, the control points are estimated from the matching
results of the BSM according to the prior distribution of the full-face model. The face patch is
then extracted from the input image, and further operations such as facial image warping and
normalization, sampling, or facial expression cancellation, can be performed to the extracted

face patch very easily by using the piece-wise affine algorithm.

Using a number of face images download from the AR face database (13), comparative study
was carried out by extracting faces with various expressions and backgrounds using the ASM

and BSM. The experiment results show that better performance is achieved by using the

BSM.

The rest of the paper is organized as follows: Section 2 introduces the BSM algorithm, Section
3 builds the statistical full-face model using PCA and describes the estimation algorithm of
the control points. In Section 4, the BSM algorithm for facial feature extraction is introduced,
and the comparative and experimental results between the ASM and BSM are presented in

Section 5. Section 6 summaries the conclusion from this study.



2 Bayesian Shape Model (BSM)
2.1 Bayesian Framework and Energy Terms

The matching of a deforming contour to the object in a given image can be formulated
as maximizing a posteriori (MAP) estimation. Denote the mean of the sample contours in
the shape domain as f, (the mean contour), the deformed version of fy as f (the prototype
contour), and the deformable contour in the image domain as f, where f; € R?N*! f ¢ R2N*!
and f € R?M*! are the matrices representing the corresponding contours formed by the
coordinates of N landmark/boundary points. According to the Bayesian estimation, the

joint posterior distribution of f and f, p(f, f|d), is (14)

p(d[f)p(f, f)

p(f,f|d) = oD

where p(d|f) = p(d|f, f) is the likelihood of input image data d.
p(f,£) = p(£[f)p(f) (2)

is the joint prior distribution of f and f. For a given image d, the MAP estimates, fy;4p and

firap, can be defined as

{fMAP, fMAP} =arg H;?%X {p(f, f‘|d)}

— e ma (PUEDPE)P(E)
= argmax { p(d)

} (3)

Note the Bayesian framework is an MAP estimation of the joint prior distribution of f and
f, which has some advantages than the classical MAP estimation. In the classic MAP (9),
the objective is to find out a prototype contour f in the shape domain, which matches the
input image data best subjected to the transformations of translation, rotation and scaling.
The disadvantage of this classic estimation is that some local or random shape variations
can not be tolerated. In Eq.(3), both fy;4p and fiy;4p are estimated, and the result contour
frrap can be different from its prototype fi;4p in shape. Two kinds of shape variations are
considered, p(f) models the prior distribution of the the shape variation and reflects major

shape variations of the object shape, and p(f|f) considers the local shape variations between

f and f. Therefore, the joint MAP estimation can match object shapes more accurately than



the classic MAP estimation.

When the densities can be modeled as Gibb’s distribution, ¢.e.

p(f) = Zl_l exp {_Econ(f)}
p(£[£) = Z5 " exp {—Einy(£[£)
p(d|f) = Z3 " exp {—Epi(d|f)

} (4)
}

where 7, Z5 and Z3 are the partition functions, maximizing the posterior distribution is
equivalent to minimizing the corresponding energy function of the contour:

{frrap, fvap) = arg rrfu?n {EBsm} (5)

where Egsyr = AeonFeon + NintBint + NewtBewt- FEeon = Eeon(f) is the constraint energy term
of the adjustable prototype contour f, which limits the variations of f and ensures that f is
similar with f in shape. E;,; = Ej,,(f|f) is the internal energy term that describes the global
and local shape deformation between f and f. The external energy term Eop = Eou(d|f)
defines the degree of matching between f and the salient image features. A.on, Ains and Az are
the manually set weighting parameters to regularize the energy terms. They are consistent

for all the tests in an experiment or application.
2.2 Constraint Enerqgy of the Prototype Contour

The constraint energy term FE.,, of the prototype contour is caused by the prior distribution
of the samples in the shape domain. The density of f, p(f), can be estimated by applying
PCA to the sample contours. In cases where all the samples are aligned views of similar
objects seen from a standard view, this distribution can be accurately modeled by a single

Gaussian distribution (15):

_ exp(—LiyM
o) = P2 Emw) )
(QW)M/Z [T e
where
w =& (f — ) (7)

is the vector of the shape parameters, and f — f; is the deformation from f; to f. ®,; is the

matrix composed of the eigenvectors corresponding to the largest M eigenvalues e;, (1 < i <



M) of the covariance matrix X, and ¥ is calculated by

D= 5oy - h) - (R ®)

In Eq.(8), D is the number of sample data. Using the PCA, a prototype contour can be

reconstructed from fy and a given shape parameter w,

The PCA representation preserves the major linear correlations of the sample shapes and
discards the minor ones, hence provides an optimized approximation of f in the sense of
least squares error. This representation describes the most significant modes of the shape
variations or the global shape deformations subjecting the prior distribution of the prototype

contour. From Eq.(6), the corresponding constraint energy is denoted as

1 & w?
ECOTL — 5 Z I (10)

i=1 i
The variation of the prototype is limited by the plausible area of the corresponding shape

parameter w, which is defined as

=0

M
Z wi < M, (11)
i=1 €

The threshold, M;, may be chosen using the x? distribution (9). The constraint energy
term ensures that the dynamically adjustable prototype contour remains similar with the
mean shape during the matching process, and at the same time, large shape variations and

deformations subject to the prior distribution of the samples can be tolerated.
2.3 Affine-Invariant Internal Energy

An affine-invariant internal energy term, E;,;(f|f), is defined and incorporated to deal with
the affine transformations between the shape domain and the image domain. It describes the
global and local shape deformations between f and f. Mathematically, f and f are related
by fi = T(f)) + € = Af; +t + ¢, (1 <i < N), where A is a 2 x 2 nonsingular matrix, t
is a translation vector, and € represents the random deformation. Define the least squares

objective function as



E(At) =) [(f—AT'(fi—t)" - (- A7 (£ —t))] (12)

i=1
the affine transformational parameters can be estimated by

A: [(F - Fav)(F - Fav)T] ) [(F - Fav) ’ (F - Fav)Trl (13)
" _

~

[t' [1717---71”2><N:Fav_AFav (14)

where F' and F are the 2 x N matrices corresponding to f and f respectively, and F,, =
[(% S f)-[1,1,...,1]]axy and F,, = [(% ) [1,1,...,1]]oxn. Matrix (F — F,,) - (F — F,,)7"
is always nonsingular provided there exist at least three points in f, which are not located

in the same line.

Let (A;, t;) be the estimated transformational parameters between f and f, if f is affine-
transformed to f', i.e. f, = A'f; +t', 1 < i < N, according to Eq.(13) and Eq.(14), the
estimated transformational parameters between f and f will be (A" A;, A't; +t'). Therefore,
the values of the objective function remain unchanged under affine transformations, and

hence the global internal energy term of the deformable contour is designed as,

1

Egim(£lf) = 5 2_[(E: = A7 (6 —8))" - (B - A7(E - 1)), (15)

where the transformational parameters (A, t) are calculated by Eq.(13) and Eq.(14). This
internal energy indicates the global matching degree between the deformable contour f and

the prototype contour f.

In addition, a local internal energy term is defined by affine invariants: the proportion of

area (16),

S1+ S2)ARE Ayyoto

Bunlt ) = ARE Agiigned
aligne

(16)

S = S(f 1,f0,f) and S, = S(f;,£%,f,,1), where S() is the area of the triangle formed
by the three points inside the brackets. AREA,, ., and AREAgjigneqs represent the inte-
rior areas formed by the hull of the prototype contour and the aligned deformable contour
(f* = A='(f;—t)) in the shape domain respectively. Fig.2 shows the geometrical relationship
between S; and S. It can be seen from the figure that, when the areas of the triangles S

and S, are close to zero, the shape and position of f and f will also be close. When the



contour represents an open shape, the local internal energy at the end point of the contour

will not be calculated.

Aligned Contour

Fig. 2. A part of the prototype contour f and the aligned deformable contour f°.

In summary, the affine-invariant internal energy is composed of both the global and local

terms,

1

~ > Eune(£[£). (17)

=1

which reflects the degree of fitting between f and f.

2.4  Ezxternal Image Constraint

The external energy term FE.,; = E(d|f) indicates the degree of matching between the
deformable contour f and the salient image features. Minimizing F,,; adjusts f and moves it
towards the object boundary in the image d. The external energy usually combines all the
information of edge, texture, color and region, so that it can provide an effective description of
the matching. For example, the color information can be combined into the edge detection
process, so that the edge maps will accurately stand for the boundaries of the interested
objects. Among various matching rules and external energy terms used in the literature, the
energy term including both the gradient and directional edge information is utilized because

of its simplicity and efficiency (6).

First, the image d = {d(x,y)} is smoothed using Gaussian function, G,(z,y), with the

deviation o:

10



do(r,y) = Go(x,y) * d(2,y). (18)

Second, the normalized gradient of the smoothed image d, at each pixel location (z,y),

denoted as A9 (z, ) = [d2, (z, 1), 2, (x, )], (|42 (z,y)|| € [0, 1)), is computed.

At last, the constraint on f ensures that f moves towards the object boundaries: when the
image pixels along the contour have high gradient magnitude, and the direction of the image
gradient along the contour is perpendicular to the orientation of the contour, the external

energy is small. Therefore, the external energy function can be defined as

Eepi(d | £) = 2(1 — A4 (@, yo)|]) In(zi, i) - (i, yi)l, (19)

=1

where “” is the dot product. h(z,y) is the direction of the gradient d4(x,y), h(z,y) =
di(x,y)/||d%(z,y)|| and ||h(z,y)|| = 1. n(z;,y;) indicates the normal vector of the contour

f at point f; = (z;,;), with ||n(z;,y)|| = 1 and n(x;,y;) = [0 _1]vi/||vi||, where v; =

fip1—f; fi—fi 1
e —f] T TE—fi

I is the tangent vector of contour f at point f;.

3 Modeling the Full-Face Using Principle Component Analysis

3.1 The Full-Face Model and Its Prior Distribution

In this section the full-face model is proposed and the prior distribution of the whole face
and the separate component models are estimated using PCA. As shown in Fig.1, a full-face
model are formed by the boundary/landmark points of the face outline, mouth, nose, eyes
and eyebrows, as well as other scattered or isolated points. These points of the full-face

model can be divided into two sets:

1) Contour points: the contour points of the face outline, mouth, nose, eyebrows and eyes;
y y
(88 points)
(2) Control points: the points that are very useful for face image warping, but correspond

to lack image edge features. (18 points)

11



Fig.1 shows two examples of the marked face. ‘0’ is the contour point representing the
outlines of the face, eyebrows, eyes, nose and mouth respectively, while ‘*’ stands for the
control point. Fig.3 plots several examples of the full-face model, where the contour points
and control points are linked to formulate a number of triangles or face units. It can be seen
that this plot is similar to the CANDIDE face model, but the later is a 3-D face model for

plotting, animating and synthesizing faces in various applications such as multimedia.

1 PR

Fig. 3. Link the model points to triangles or face units.

Fig. 4. The mean face model and all the 39 normalized face models.

The full-face model in the shape domain, s, can be represented as
- T
s=[f" '], (20)

where f(1N;x1) represents the contour points, ¢(2N, x 1) is the control points, and N+ N, =
N. The contour points of the face consist of 7 component contours of separate facial features:
a face outline contour, a mouth, a nose, two eyes and two eyebrows (see Fig.4 and Table 1).

These component contours are denoted as f;,1 < i < 7, and
. _ T
f=[f £ - f]. (21)

12



Table 1

Component contours of the face contour

Component contour | Facial feature | Number of points
fi face outline 23
fy and f3 eyebrows 2x8
fy and f5 eyes 2x8
fs nose 13
fr mouth 20

The PCA is utilized to build the statistic model of the full-face model. First, all the sample
face images are manually marked and normalized /aligned to a standard view by using least
square errors method. Then, the distribution of the full-face model, the whole contour model
as well as the separate component contour models of the face are established from these
normalized sample data using PCA. These three kinds of shape models are summarized as

follows,

(1) Full-face model (8): a hybrid overall distribution model for all the contour points and
control points of the full-face in the shape domain.
Using PCA, given a shape parameter wy, the full-face model can be reconstructed using

the following equations,

S=5y+ (I)SWS (22)

and the shape parameter of an input sample, s, can be determined by

Wy = @Z(g - 50) (23)

where @, is the matrix composed of the eigenvectors corresponding to the largest M,
eigenvalues, which is computed from the covariance matrix of all of the sample data.
The distribution of the full-face model can be reasonably modeled by a single Gaussian
density (see Eq.(6) to Eq.(11) for detail).

The full-face model is very useful for determining the control points when the contour
points are known.

(2) Whole contour model (f): the distribution model that takes all the contour points as a

13



whole.

The shape parameters of the whole contour model can be calculated by

wy = (f — ) (24)

and also, the whole contour can be synthesized from a given shape parameter wy,

f:fo—F(I)fo (25)

The whole contour model integrates all the component contours, which is useful for
matching the overall face object.

Component contour model (f;, 1 < i < 7) : separate distribution model for each
component contour.

Using PCA, the shape parameters of each component contour can be described as

where ®;, (1 < i < 7) are the matrices composed of the eigenvectors corresponding
to the largest M; eigenvalues, which are computed from the covariance matrix of all of
the sample data. Then, given the shape parameters w;, (1 < i < 7), each component

contour can be reconstructed by

Note in establishing the above component models, all the sample contours of each

component are translated into a standard position before performing PCA, so that the

model of each component contour reflects only their own shape variations.

To apply the BSM algorithm for facial feature extraction, first the BSM is used to match

all the contour points f of the face model to the target face in the input image. During the

matching procedure, both the whole and separate contour models are utilized to ensure that

the facial contours are matched accurately. Finally, the control points are estimated from

the matching result of the contour points based on the full-face model, to extract the face

patch. Further processes like face patch warping, can be performed very easily.

The method for estimating the control points from the contour points using the prior distri-

bution of the full-face model is proposed in the following section.

14



3.2 Estimation of the Control Points

Suppose the current deforming contour f in the image domain and its prototype contour
f are known, the corresponding transformational parameters A and T (between f and f,
or between F and F)) can be estimated using alignment algorithms (Eq.(13) and Eq.(14)).

Then, the contour points can be transformed into the shape domain using,
F'=AYF-T). (28)

To estimate the control points corresponding to f’ using the full-face distribution model, in

this section, a fast approximate algorithm is proposed. The idea is to estimate the shape

AT T
- ~T
f c ]

parameter W,, so that the contour points f of the reconstructed full-face model s =
matches f' closely, and hence the corresponding reconstructed control points ¢ can be re-

garded as the estimate of the control points.
The detail procedure is described as follows,

(1) The estimation problem is to find out Wy, so that the result f matches f in the sense

of least square errors. From Eq.(22) f can be calculated by

2 2T T
£=[70] [f cT}
=[I 0](8§y + P,w;)
=[I 0]sp + [ 0]® W, (29)
where I is a unity matrix and O is a zero matrix. Noting f, = [I 0]§, and denoting

<I>f' = [I 0]®,, from f;, <I>f', f' and Eq.(23), the shape parameter W, can be estimated

using
“ 1T = =
w, =0, (F — %) (30)

(2) The control points ¢ can be calculated through w,,

¢ = [0 I](sp + Pw,) (31)
(3) The final full-face contour in the shape domain is represented by

~ —r ~T1T

s=[f7 &' (32)

T
thus its transformed counterpart in the image domain, s = [fT cT] can be obtained

15



accordingly.

In this way, the extracted face not only consists of the contour points but also the control
points, and now it is ready to be warped or normalized by linking these points to triangle

face units and using the piece-wise affine warping algorithm.

The above estimation performs very fast, and its calculation begins from the face contour,

f, and ends at the control points, c, as,
f -f -w, >¢c—c. (33)

The principle behind this approximate estimation is that the information provided by the
contour and control points of a full-face model is redundant, i.e. using partial contour infor-

mation, the whole shape of the full-face can be described approximately.

In order to further evaluate this estimation quantitatively, we test the algorithm using a
number of, NUM, manually marked images. The average error or distance between the
estimated control points (NU Mg is the number of the control points) and the marked points

in the shape domain is used.

1 NUM¢
Error = Ci — C; 34
Table 2
Average error of the estimation.
Test images Number of images | Average error | Error/Scale
Training samples 25 1.3 0.4%
Testing images 25 3.05 1.0%

In the experiment, 50 marked images with different face expressions are used, which is
partitioned into two sets. The first set consists of 25 training sample images, while the other
uses the marked images not used for training. It can be seen from Table 2 that although
more accurate estimation can be obtained from the trained sample images, the average error
is also small for the other image set, which are not in the training set. Moreover, it can be
seen that the relative errors, i.e. the error/scale ratio, are very small with respect to the

scale of mean face model in the shape domain, i.e. 360 x 294.

16



Fig. 5. The original (upper row) and the warped (lower row) face images.

Fig.5 shows several examples of the warping results, where the contour points are known and
the control points are estimated by using the proposed algorithm. These full-face models are
then utilized for face patch warping. In the figure, the upper row is the original face patches,
while the bottom row corresponds to the warped images of the upper row, which changes the
expressions of an extracted face patch. For example, the first column of the images illustrates
how to change the expression to smile, and the second column is a reverse procedure. It can be
seen from the figure that the proposed full-face model describes the face well, and through
image warping, the expressions of face can be removed/changed, which is very useful for
further face recognition, 2-D face animation, content based face image coding and retrieval

in multimedia applications.

4 The Use of the BSM for Extracting Facial Features

The BSM algorithm for extracting facial features is summarized in this section. First we
introduce the computation of BSM, and then describe the facial feature extraction algorithm

in detail.

4.1  Computation of BSM

The computation of BSM is actually a solution finding procedure that minimizes the energy
terms. Since the energy term of BSM is non-convex and very complex, in this study, in order
to drive the BSM to the target object using energy minimization, an iterative procedure,

incorporating the coarse-to-fine multiresolution searching techniques, is used. The major

17



techniques used include i) iterative shape constraint, which ensure that the deforming contour
is in the allowable area according to the prior distribution of object shapes; ii) matching in
multiresolution framework, which first matches object in the coarsest image, and then refines
the location of the model using a series of finer resolution images; iii) coarse searching, which
matches only the contour points corresponding to salient image features, and only considers
the global shape variations in the coarser resolution; iv) fine tuning, which matches all the
contour points and considers not only the global but also local shape variations. In summary;,

the solution finding algorithm of BSM is described as follows.
Stage 1 (coarse searching):

Obtain the parameters of A and T using object detection and feature points alignment (man-
ual initialization method is used in this thesis for simplicity), set the weighting parameters
Meons Aint and Aegy, set the order K of the multi-resolution pyramid, n =0, w = 0, £ = f,
the contour f for object matching in the image domain is initialized as F(™ = A(F(")) +T,

and calculate the multiresolution images and edge maps. £k = K — 1, and n = 1.

(1) Examine the image region in a neighborhood of (=1 and find out a new contour (™,
which obtains minimum external energy (at resolution level k).

(2) Update the parameters of affine transform, T(/Al, t), by aligning £ and £f*~1). Calculate
f(") using Eq.(13) and Eq.(14), and obtain a new prototype £ from £, at the
same time, make sure that the prototype is a plausible shape according to the prior
distribution of object shapes.

(3) Update the current contour f™ to T'(f™) because the local shape variation is not taken
into account in the coarse searching.

(4) Set n =n + 1 and go to step (1) unless the newly updated f(® is close to the old one
f("=1) (the least square error is smaller than a preset threshold £.), or the maximum
iterations I have been applied.

(5) Set n=n+1and k =k —1.If k£ > 0, then go to step (i), else exit the coarse stage and
go to the fine stage.

Stage 2 (fine matching):
k=0

(1) Update the contour f(™ by minimizing the internal and external energy terms.
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(2) Update the parameters of affine transform T'(A, t), and apply the shape constraint,
i.e. update parameters w, and the prototype contour £, according to £ (9). The
constraint of w is applied to ensure the prototype contour is in a plausible area.

(3) Repeat step (i) and (ii) until convergence.

4.2 BSM Algorithm for Facial Feature Extraction

In the previous section, we introduced the detailed computation procedure of BSM. In this
section, we describe how to use the BSM for facial feature extraction by incorporating the
full-face model. There are two stages for the solution finding procedure, 1.e. coarse matching

and fine matching.

In the coarse searching stage, since the component contours are relatively far away from
their target objects, only the whole contour model f is utilized. Moreover, the face outline

contour is utilized for actively searching and updating the whole face contour.

Since the whole contour model consists of multiple component contour models f;, (i =
1,2,..,7), in the fine matching procedure, each component contour model is utilized to
match facial features, e.g. eyes, mouth, and others separately. After all the newly updated
contour points are obtained, a shape constraint is carried out using the whole contour model
to ensure that the whole shape of the face is within an affordable area. The sketch of the

fine matching is shown in Fig.6

Fig.7 plots an example of the BSM matching result. After the face patches are extracted, an
image warping algorithm can be performed to warp the extracted face patch to the mean
shape of the face model. The extracted face patch in the shape space from Fig.7 is also
plotted in Fig.8, which also shows its warped version to the mean of the face contour. From
Fig.8, it can be seen that the features of a face consists of two parts, the shape features and
the appearance features, both of which play important role in describing the face. Since the
sampling and warping of the appearance is depended on the shape information, accurate

matching of the face contour is crucial in face matching and extraction.
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Fig. 6. The fine matching stage of BSM for facial feature extraction.

input image initial matching result

Fig. 7. Facial feature extraction using BSM.

Extracted face patch ~ Warped face patch

Fig. 8. The extracted face patch and its warped counterpart to the mean facial shapes (all patches
are in the shape domain).

5 Experimental Results and Discussion

In this section, experiments are carried out to compare the ASM and BSM algorithms for fa-

cial feature extraction, and the comparison results are analyzed. More results using the BSM

20



algorithm are further presented to demonstrate its effectiveness in facial feature extraction.

5.1 Performance Comparison Between ASM and BSM

For comparison purpose, the training sets and the initial positions of the face model used
in the experiment are the same for both of the algorithms. The sample face images used for
training are selected from the AR frontal face database (13) (http://rvll.ecn.purdue.edu/
~aleix/aleix _face_DB.html), which consists lots of male and female frontal face images
with various expression. In our experiment, 39 sample contours are manually marked, and
aligned /normalized using least squares error method to constitute the shape space, and Fig.4

plots the normalized sample contours and the mean contour.

The face images used for testing include two sets, the first set is also chosen from the AR
face database, which consists of the face images that are different from the training images,
the second testing set are the face images with different and complex background from the

training set.

In the comparative experiments, both of the ASM and BSM are used to match the se-
lected sample face images. Altogether 20 different face images, each one has three different

expressions, are recruited for testing purpose.

The initial contour for each image is set as the transformed version of the mean face contour.

Suppose the transformation between the target face contour and the mean face contour is

cosfly —sinfy | to1
7 = g, f, + (35)

sin 90 COS 90 tog

where f? is the target face contour and f; represents the mean contour. The transformational
parameters used to initialize the contour is chosen by randomly varying the parameters,
i.e. Sq, Bo, tor and tge, by [-15%, 15%]|. For each testing image, 10 random initial contours
are generalized, and therefore altogether 600 tests are carried out using BSM and ASM
respectively. In this paper, the results of ASM are obtained by using the ASM Toolkit
(Version 1.0) of the Visual Automation Ltd (http://www.wiau. man.ac.uk/VAL).
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Table 3
Average errors of matching results of ASM and BSM (Unit in pixel)

Algorithm ASM | BSM

Average error of initial | 29.3 | 29.3

Average error of results | 4.8 2.1

Error/scale 1.7 0.7

Some examples of the initial positions and the matching results using ASM and BSM are
demonstrated in Fig.9. It can be visually seen from the figures that the matching results of

BSM is more closer to the boundaries of the facial features.

To study the matching result quantitatively, the distance or error between the deformable

contour f to its target position (marked manually), ERROR, is defined in the shape domain,

1 X ~
ERROR = &3~ ||~ (8) — £/ (36)
=1

where T'(+) is the transformation of the current contour between the shape domain and the
image domain, and f¢ is the target object marked manually. Note the ERROR is transfor-
mational invariant because it is defined in the shape domain, and hence it is reasonable to use
ERROR to justify the matching accuracy of different input images. The values of ERROR
for the matching results are listed under each face image in Fig.9. It is clear that although
using either ASM or BSM, the target face contour can be matched, the BSM obtains better
performance than ASM, i.e. less matching error. For example, it can be seen from the first
row of Fig.9 that using ASM, the ERROR is 2.1, while using BSM, the FRROR is only
1.3, which is much less than that of ASM.

Table 3 shows the average initial error and the average matching errors of the ASM and
BSM for all the 600 tests. It can be seen from the table that BSM obtains a better accurate
matching results than the ASM, i.e. with less matching ERROR.

In real applications of face matching, the target objects may exist in different backgrounds.
Therefore, the second set of the experiment is carried out to compare the performance of

ASM and BSM for matching the images whose background different from that of the training
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samples. It worth noting that since the image background is quite different from case to case,
the ASM often obtains diverse matching results because of the background dependence.
Fig.10 illustrates one example of ASM when the testing image background is different from
that of the training sample. Fig.10(a) plots the initial contour, and in the experiment we
found that it is quite difficult for the ASM to obtain satisfied result. One of the matching
results of ASM is given in 10(b), it is seen that the matching result actually diverges. To
avoid the divergence, we tried another way by fixing three face outline points manually
onto the target position, 7.e. the three points can not move during the matching procedure.
However, experiment shows the ASM still can not obtain a satisfied result (see 10(c)). After a
number of iteration, it can not converge to the target contour and instead it intends to move
to other places of the image. On the contrary, since BSM has an advantage of background

independence, it is more adaptable for the applications of facial feature extraction.

Finally, it worth noting that because BSM considers the shape deformation between the
deforming contour and the prototype contour, its computational speed is not as fast as that
of the ASM. However, the experiments show that the speed of BSM is still acceptable, which
performs at around 0.136 seconds per iteration for the 88 points’ face model (the contour
points only), and generally the algorithm converges after around 15 iterations using the PC

with 450MHz Intel Pentium processor.

5.2  More Experimental Results Using BSM Facial Feature Extraction Algorithm

In practice, before matching and extracting the face features, the users are expected to
detect the face from the input image. For example, in (17), a template matching strategy
is used, and the rotations are dealt with by enumerations of various rotated versions of
the template. To further demonstrate the effectiveness of BSM, in this section, BSM are
used to match the frontal faces with different rotation angles, i.e. the face images with
different expressions, different rotation angles, and complex image background are utilized
as the input images. Some of these images are chosen from the database of the Vision
and Autonomous System Center (VASC) of CMU (http://www.cs.cmu.edu/afs/cs.cmu.edu/
user /har/Web/faces.html), while the others are captured by ourselves using USB camera in

the laboratory environment.
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Fig.11 shows several matching results using BSM. The extracted face patches and their
warped versions to the mean facial shape are shown in Fig.12. It can be seen from Fig.12
that besides the shape information of a face, the interior gray level information is also very
important for face recognition, face animation, and even multimedia applications. In the
warped face patches, even there is no difference in shape, from the appearance information
alone, one can recognize different person easily. As a conclusion, using the BSM facial feature

extraction algorithm, not only the shape of the face, but also the face patch can be extracted.

From experiments we found that good results are observed for face matching when the reso-
lution is larger or around 150 x 150 points for a face. A simple facial feature extraction system
is implemented to demonstrate the performance of BSM. The system uses the proposed full-
face model to describe the face contour, and the distribution parameters of the model, i.e.
the mean face contour and the shape parameters of the shape variation, are trained offline,

and the training samples are the images from the AR face database.

The operational sequence of the system is: first capture an image from the USB video camera
or load an existing face image file from disk, and manually initialize the face contour so that it
is close to the target face, then the final matching result of the input face image is iteratively
obtained by the software, finally, the face patch is extracted and its warped version to the
mean face contour in the shape domain is also calculated. Fig.13 shows the dialog to capture

an image from the input USB video, and the matching results are given in Fig.14.

In this system, the initialization of the contour is manually set for simplicity. The initializa-
tion is done by manually select three points in the input image (the three points that we
select are the center points of the left, right eyes and the mouth). Then the corresponding
transformational parameters of the initial contour can be found by aligning the selected three
points with their corresponding three points in the shape domain. At last, the initial contour

is set as the transformed version of the mean face contour.

Fig.15 and Fig.16 plot some matching results of the face images, including the initial con-
tours, the matching results and the extracted and warped/normalized face patches. The
resolution of these images is 320 x 240, and the size of the face is approximately half of the

image size. It can be seen from the figures that good matching and extraction results are ob-
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tained. The good matching results using BSM on the face images captured from USB camera
further indicate the potential applications of the BSM facial feature extraction algorithm.
For example, in face recognition system, BSM can be used to accurately match and extract
the face patches, then the classification based on the shape and the appearance information
of the extracted face patch, such as EigenFace algorithm (11) can be performed. In face
image indexing, coding and multimedia systems, BSM facial feature extraction algorithm
can also be utilized to extract the interested face patches accurately as long as the prior
face model is trained and the face can be detected, located properly close to the target face

position.

6 Conclusion

The facial feature extraction using the Bayesian Shape Model is studied in this paper. A
full-face model consisting the contour points and the control points are developed to describe
the shape of a face. The full-face model is suitable for extracting face patch warping, as well
as simplifying sample of the appearance. Experimental results demonstrate that as compared
with ASM, more accurate matching result can be achieved by using BSM. Therefore, BSM
is suitable for the face matching applications where the matching accuracy is crucial. The
potential applications of BSM facial feature extraction algorithm include face recognition,

face video coding and retrieval, face animation and multi-media.
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Fig. 9. Some Matching Results of ASM and BSM.
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Fig. 11. Facial feature extraction using BSM.
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Warped face patches

Fig. 12. The extracted face patches and their warped counterparts to the mean facial shapes (all

patches are in the shape domain).
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Fig. 13. Capture the face image from USB video camera.
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Fig. 14. The extracted and normalized face patches.
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(D).

The extracted and normalized face patches

Fig. 15.
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Fig. 16. The extracted and normalized face patches (IT).

32



